• Everyone had slightly different results…rarefy will produce different results each time.

• Richness declined by 30-40%, which species were dropped?

• Bray Curtis dissimilarity dropped from 0.46 to 0.27. Most of the increase in similarity came from controlling abundance of common species, not the loss of rare species.

• Use a qualitative metric to look at changes in species composition

• Mean steinhaus dissimilarity: raw 0.653 vs. 0.506 rarefied

• What if we retain only the 60 most abundant OTU (dropping 82 rare OTU)?

 • Mean Bray Curtis
 - Raw 0.4614
 - Rarefied 0.2649

 • Mean Steinhaus
 - Raw 0.6070
 - Rarefied 0.4774

• So, eliminating almost all of the rare species did not change Bray Curtis at all. Steinhaus similarity increased, and the difference between raw and rarefied decreased.
• Doing 1000 rarefactions of the data as described…results are essentially identical to what is in the paper.

Distance matrix analyses

What can you do with a large triangular similarity matrix?
Recall that each element in the triangular matrix is a similarity measure between two objects (samples in this case).
What if your hypothesis is that two groups of samples are different?

Earlier approaches
• Can be used as descriptive statistics with subjective levels of "similar" or "not similar".
• Next week – cluster analyses and dendrograms. Visual but also largely descriptive.
• Future classes – ordinations (also descriptive!)
• Traditional statistical methods are not appropriate due to a lack of independence among samples.
Three techniques to test for these patterns in a similarity matrix.

- **ANOSIM** – Analysis of similarity
- **MRPP** – Multi response permutation procedure
- **Multivariate Analysis of Variance for Distance Matrices**
- **Analysis of Molecular Variation (AMOVA)**

These all work for any application where you can calculate some distance among units and want to look for differences among groups of units.

- Eg. morphological data, spatial layout data, behavioral data, molecular data

ANOSIM

- Dissimilarity matrix divided up by grouping variable(s)
- Between groups vs among comparisons of interest
 - Rank all similarities
 - If groups are more similar than random (null), then mean rank similarity within a group should be less than among groups.

ANOSIM

- Calculate observed R statistic
 - Ranges from -1 to 1
 - 0 = no pattern
 - 1 = all within group ranks less than among group ranks
 - -1 all within group ranks greater than among groups

\[
R = \frac{(B - W)}{N(N - 1)}
\]

- B – mean between group ranks
- W – mean within group ranks
- N – number of samples

Need variable (factor) grouping your data

- Load the data as you normally would.
- You will need to separate the community data from the variables describing your groups.

```r
# Load data
sample_data <- read.csv("sample2.csv", row.names = 1)
year <- as.factor(sample_data$year) # subset
community <- subset(sample_data, select = c(year, creek))
```

- This code yields four objects
 - Sample_data: everything in the original data file
 - year and creek: variables with year and creek factors
 - Community: community matrix without factors

Test of significance

- How do you test the significance of the R value?
 - “What is the probability of obtaining an R value equal to or greater than the observed?”
 - Permutation test:
 - Randomize the observed data, calculate R, repeat
 - Compare observed R to distribution of randomized R
 - Use caution in how you set up your randomization!

ANOSIM (vegan package)

- **R Code:**
 - `community_dist <- vegdist(community_proportion, method = 'bray')`
 - `year_ano <- anosim(community_dist, year, permutations = 5000)`
 - `summary(year_ano)`
 - `plot(year_ano)`
 - `hist(year_ano$perm)`

- **Options**
 - # permutations
 - Strata (block groups for permutations)
 - Requires dissimilarity matrix
 - You can either supply a dissimilarity (triangular) matrix, or community matrix and specify what kind of dissimilarity to produce (method =)
 - Parallel – specify how many cores to use in parallel

- **Output**
 - Observed R, vector of permuted Rs, significance of observed R
ANOSIM

- Can use any similarity measure on virtually any data
- Converts to rank similarity (information loss)
- Two way designs can be tested (see Primer ver. 6)
- Use of ranks means differences in the amount of variability (dispersion) not detected
- Pairwise tests often not built in (but see Primer)
- Often done in conjunction with Non Metric Multidimensional scaling (NMDS) ordination

ANOSIM output

<table>
<thead>
<tr>
<th>Dissimilarity: bray</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOSIM statistic R: 0.4576</td>
</tr>
<tr>
<td>Significance: 0.001</td>
</tr>
<tr>
<td>Based on 999 permutations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Between</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Histogram of year_ano$perm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean of rank similarities within each group and between all groups.</th>
</tr>
</thead>
<tbody>
<tr>
<td>tapply(year_ano$dis.rank,year_ano$class.vec,mean)</td>
</tr>
</tbody>
</table>

ANOSIM

- From the writer of the procedure in R: “I don’t quite trust this method. Somebody should study its performance carefully. The function returns a lot of information to ease further scrutiny.”

- Very popular technique. However, there are more powerful alternatives.

Multiple Response Permutation Procedure (MRPP)

- Conceptually similar to ANOSIM but does not use ranks
- Calculated statistic is $\Delta = $ weighted average within group similarity
- Permutations – randomize matrix, recalculate Δ
- Significance of Δ assessed by distribution of permuted Δ scores.
- Code
  ```
  community_dist <- vegdist(community_proportion, method='bray')
  year_mrpp <- mrpp(community_dist, year, permutations=5000)
  ```
- Options
 - As in ANOSIM - permutations, strata
 - Weights – three methods for weighting sample size for Δ calculation

MRPP

- Avoiding ranks means
 - MRPP can detect differences in mean as well as dispersion.
 - Biases in distance metric will be more pronounced than in ANOSIM
- Output
 - Observed Δ
 - Vector of permuted Δ and expected Δ
 - Significance of observed Δ
 - A - estimate of the proportion of distances explained by the factor

Multivariate Analysis of Variance Using Distance Matrices

- Recently described, generally superior to ANOSIM in all ways, MRPP in most ways
- Robust alternative to MANOVA, sometimes called permutational MANOVA
- Using this technique with one dependent variable and a Euclidean distance matrix should yield same results as a traditional ANOVA
- Also similar to AMOVA

Multivariate Analysis of Variance Using Distance Matrices

- SS$_t$ = sum of squared differences between all observations and the overall centroid.
- SS$_w$ = sum of squared differences between group observations and group centroid.
- SS$_a$ = SS$_t$-SS$_w$
- Pseudo-F = ratio of SS$_a$ to SS$_w$
Multivariate Analysis of Variance Using Distance Matrices

- Should be applicable any time ANOSIM or MRPP can be used.
- Should be more robust than ANOSIM or MRPP
- Higher level ANOVA designs, including interactions

Code:

```r
permanova <- adonis(community_proportion ~ creek*year, method="bray", permutations=10000)
print(permanova)
```

Options

- Permutations
- Distance metric (procedure works with raw community dataset not a triangular matrix)
- Strata
- Model eg. community ~ site * time

Output

- Standard ANOVA table with % variance accounted for by each variable (factor) and the residuals (error)
- Observed and permuted pseudo-F
- Species coefficients for each level of each factor

Df	Sum Sq Mean Sq F value Pr(>F)	
creek	5	0.4985 0.0997 0.1387 0.13887 0.0304 *
year	2	1.6113 0.8057 16.0804 0.44891 9.999e-05 ***
creek:year	10	0.5778 0.0578 1.1533 0.16098 0.3073

Number of permutations: 10000

Terms added sequentially (first to last)

Df	Sum Sq Mean Sq F value Pr(>F)	
creek	5	0.4985 0.0997 0.1387 0.13887 0.0304 *
year	2	1.6113 0.8057 16.0804 0.44891 9.999e-05 ***
creek:year	10	0.5778 0.0578 1.1533 0.16098 0.3073
Residuals	18	0.9018 0.0501 0.25125
Total	35	3.5895

A note about R models

- There is standard R language for model formulas
- Assume the following variables
 - Y – dependent variable
 - X1, X2 – continuous independent variables
 - F1, F2 – discrete independent variables (factors)
 - Y~X
 - Linear regression
 - Y~F
 - Multiple regression without interaction
 - Y~F+F
 - Multiple regression with interaction
 - Y~F+F*F
 - Two factor ANOVA without interaction
 - Y~F+F+F
 - Two factor ANOVA with interaction

- See help.start() section 11 – Statistical Models in R

AMOVA

- Very similar to analysis of variance using distance metric (in fact, using a Euclidean distance matrix should yield identical results).
- First developed for analyzing mtDNA haplotypes
- Distance matrix was pairwise steps in a network
- Grouping variable was population

AMOVA

- Two amova functions, both named "amova"
- Package ade4
 - Haplotypic approach – requires 1) matrix of haplotype frequency by population, 2) Euclidian distance among haplotypes in netowrk, and 3) assignment of populations to groups
 - Separate function randtest tests significance through permutation.
- Package pegas
 - More general approach – requires genetic distance matrix and a factor.

Reading

- Sample script and dataset
- Papers
- Text: Chapter 3, information on similarity measures
- For information on formulas in R, review chapter 11 -help.start()