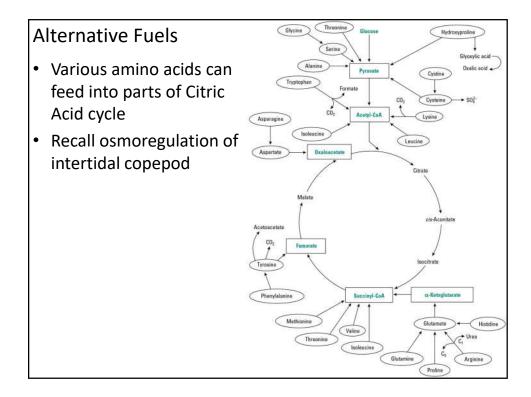
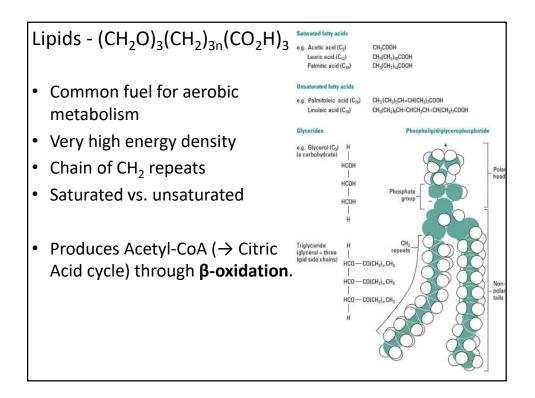




Review of some terms Catabolic processes Glycolysis Glycogenolysis 	
 Anabolic processes Glycogenesis Gluconeogenesis 	
 Molecules Glucose Glucagon Pyruvate Lactate Creatine phosphate 	
 Hormones Insulin Glucagon 	How does the Atkins diet "work"?





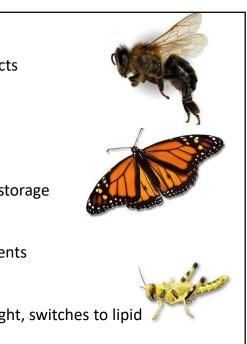
Reaction sequence		ld cose
Glycolysis (in cytoplasm) Phosphorylation of glucose Phosphorylation of fructose 6-phosphate Dephosphorylation of 2 molecules of 1,3-bisphosphoglycerate Dephosphorylation of 2 molecules of phosphoenolpyruvate (2 NADH are formed in the oxidation of 2 molecules of glyceraldehyde 3-phosphate)	-1 -1 +2 +2	+2
Conversion of pyruvate into acetyl-CoA feeding into Krebs cycle (in mitochondria) (2 NADH are formed)		
Krebs cycle (in mitochondria) 2 molecules of GTP are formed from 2 molecules of succinyl-CoA (6 NADH are formed in the oxidation of 2 molecules each of isocitrate, α-ketoglutarate, and malate) (2 FADH ₂ are formed in the oxidation of 2 molecules of succinate)	+2	+2
<i>Oxidative phosphorylation (in mitochondria)</i> 2 NADH formed in glycolysis; each yields 2 ATP 2 NADH formed in the oxidative decarboxylation of pyruvate: each yields 3 ATP	+4 +6	+32
2 FADH ₂ formed in the Krebs cycle; each yields 2 ATP 6 NADH formed in the Krebs cycle; each yields 3 ATP	+4 +18	+52
Net yield per glucose	+36	

 Lipids - (CH₂O)₃(CH₂)_{3n}(CO₂H)₃ Greater oxygen demand to produce ATP, measured as respiratory quotient (RQ) 	
• Carbohydrate metabolism $- C_6H_{12}O_6 + 6 O_2 \rightarrow 6 CO_2 + 6 H_2O$ $- Ratio of CO_2 to O_2 is 1:1$ - RQ = 1.0	
• Lipid metabolism (n=17) - $(CH_2O)_3(CH_2)_{51}(CO_2H)_3 \rightarrow 6 CO_2 + 6 H_2O$ - $C_{57}H_{111}O_9 + 80 O_2 \rightarrow 57 CO_2 + 55 H_2O$ - Ratio of CO_2 to O_2 is 57:80 ~ 0.67 - RQ = 0.7	

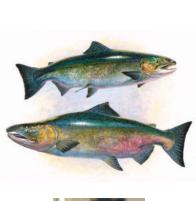
Nutrient	Heat production		RQ		
	kJ per g consumed	kJ per l O ₂ consumed	(CO ₂ formed /O ₂ used)	Metabolic water (g per g food)	Metabolic water (g per KJ)
Carbohydrates	17.4	20.9	1.00	0.56	0.032
Lipids	39.3	19.6	0.71	1.07	0.027
Proteins	17.8	18.6	0.80	0.4-0.5	0.022

 Fast ATP yield, high ATP per unit oxygen, low energy density

• Lipids

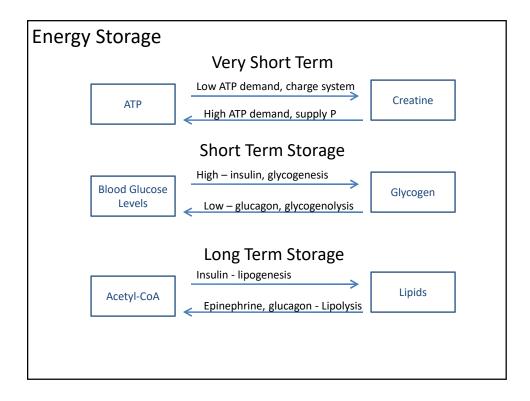

 Slow ATP yield, low ATP per unit oxygen, high energy density

Patterns of Energy Use


- The relative contribution of fuel types, duration and capacity are all variable.
- For example, general categories of muscle differ:
 - Red muscle
 - Lipid catabolism
 - High myoglobin, well supplied by vessels
 - Fatigue resistant
 - Slow acting
 - White muscle
 - Carbohydrate catabolism
 - Low myoglobin
 - Fatigue quickly
 - Fast acting

Ecological Implications

- Short distance, fast flying insects
 - Rely on carbohydrates
 - Fast start, fast metabolism
 - Low duration
- Long distance, slow flyers
 - Lipids, more dense energy storage
 - Slower to metabolize
- Flying locust energy requirements
 - 500 mg per hour glycogen
 - 70 mg per hour lipid
 - Uses glycogen to initiate flight, switches to lipid



- Migrating salmon
 - Begin migration using lipid stores
 - Infrequent burst acceleration involves carbohydrates
 - Later in trip, protein catabolism
- Humans
 - High capacity for carbohydrate metabolism and lactate turnover
 - Carb-loading maximize muscle glycogen stores

