Dominance vs. Founder Controlled Community

- **Founder controlled community** - Early community determined by dispersal ability
 - R-selected
 - K-selected

- **Dominance Controlled Community** – Over time, poorer dispersing species (better competitors) arrive and dominate.
 - R-selected
 - K-selected

Intermediate Disturbance Hypothesis

- Where do we observe the greatest diversity in terms of disturbance frequency or intensity?

Comparing communities

- Need an index of community similarity
 - Assess resistance or resilience to disturbance
 - Assess “quality” of a system as similarity to a reference community
 - Assess rate of change in community composition

- As with diversity indices, need multiple metrics
 - Qualitative – similarity based on species presence/absence
 - Quantitative – similarity based on relative abundance
Comparing communities

- Index of community similarity
- One qualitative (Jaccards Index), one quantitative (PSI)
- Percent Similarity Index (PSI)
 - Quantitative
 \[
 PSI = \sum_{i=1}^{S} \min P_i
 \]
 - Where \(P_i \) is the proportion of the community composed of species \(i \).
 - 0.0 = species proportional abundances not similar among communities
 - 1.0 = species proportional abundances identical

PSI Example

<table>
<thead>
<tr>
<th>Species</th>
<th>Com. 1</th>
<th>Com. 2</th>
<th>(P_i) sp. 1</th>
<th>(P_i) sp. 2</th>
<th>Min (p_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species 1</td>
<td>9</td>
<td>5</td>
<td>0.183673</td>
<td>0.084746</td>
<td>0.084746</td>
</tr>
<tr>
<td>Species 2</td>
<td>7</td>
<td>5</td>
<td>0.142857</td>
<td>0.084746</td>
<td>0.084746</td>
</tr>
<tr>
<td>Species 3</td>
<td>3</td>
<td>4</td>
<td>0.061224</td>
<td>0.067797</td>
<td>0.061224</td>
</tr>
<tr>
<td>Species 4</td>
<td>5</td>
<td>0</td>
<td>0.084746</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Species 5</td>
<td>5</td>
<td>28</td>
<td>0.102041</td>
<td>0.474576</td>
<td>0.102041</td>
</tr>
<tr>
<td>Species 6</td>
<td>25</td>
<td>9</td>
<td>0.510204</td>
<td>0.152542</td>
<td>0.152542</td>
</tr>
<tr>
<td>Species 7</td>
<td>3</td>
<td>0</td>
<td>0.050847</td>
<td>0.050847</td>
<td>0</td>
</tr>
</tbody>
</table>

N = 49 59 PSI = 0.485299

Diversity Indices

- S = 5 7
- H’ = 1.34 1.60

Jaccards Index (Qualitative)

- Species abundance ignored, only presence or absence of species used.
 \[
 Jaccards = \frac{a}{a + b + c}
 \]
 - Where
 - \(a \) = number of species in both communities
 - \(b \) = number of species unique to community 1
 - \(c \) = number of species unique to community 2
 - 0 = no species in common
 - 1.0 = all species in common

Jaccards Index Example

<table>
<thead>
<tr>
<th>Species</th>
<th>Com. 1</th>
<th>Com. 2</th>
<th>Jaccards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species 1</td>
<td>9</td>
<td>5</td>
<td>a</td>
</tr>
<tr>
<td>Species 2</td>
<td>7</td>
<td>5</td>
<td>a</td>
</tr>
<tr>
<td>Species 3</td>
<td>3</td>
<td>4</td>
<td>a</td>
</tr>
<tr>
<td>Species 4</td>
<td>0</td>
<td>5</td>
<td>c</td>
</tr>
<tr>
<td>Species 5</td>
<td>5</td>
<td>28</td>
<td>a</td>
</tr>
<tr>
<td>Species 6</td>
<td>25</td>
<td>9</td>
<td>a</td>
</tr>
<tr>
<td>Species 7</td>
<td>0</td>
<td>3</td>
<td>c</td>
</tr>
</tbody>
</table>

\[
Jaccards = \frac{a}{a + b + c}
\]

Jaccards = 0.714286